Links

Tools

Export citation

Search in Google Scholar

Dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) cycling across contrasting biological hotspots of the New Zealand Subtropical Front

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

The oceanic frontal region above the Chatham Rise east of New Zealand was investigated during the late austral summer season in February and March 2012. Despite its potential importance as a source of marine-originating and climate-relevant compounds, such as dimethylsulfide (DMS) and its algal precursor dimethylsulfoniopropionate (DMSP), little is known of the processes fuelling the reservoirs of these sulfur (S) compounds in the water masses bordering the Subtropical Front (STF). This study focused on the two opposing fates of DMSP-S following its uptake by microbial organisms: either its conversion into DMS, or its assimilation into bacterial biomass. Sampling took place in three phytoplankton blooms (B1, B2 and B3) with B1 and B3 occurring in relatively nitrate-rich, dinoflagellate-dominated Subantarctic waters, and B2 occurring in nitrate-poor Subtropical waters dominated by coccolithophores. Concentrations of total DMSP (DMSP t ) and DMS were high across the region, up to 160 nmol L −1 and 14.5 nmol −1 , respectively. Pools of DMSP t measured in this study showed a strong association with overall phytoplankton biomass proxied by chlorophyll a (r s = 0.83) likely because of the persistent dominance of dinoflagellates and coccolithophores, both DMSP-rich taxa. Heterotrophic microbes displayed low S assimilation from DMSP (less than 5 %) likely because their S requirements were fulfilled by high DMSP availability. Rates of bacterial protein synthesis were significantly correlated with concentrations of dissolved DMSP (DMSP d , r s = 0.86) as well as with the microbial conversion efficiency of DMSP d into DMS (DMS yield, r s = 0.84). Estimates of the potential contribution of microbially-mediated rates of DMS production (0.1–27 nmol L −1 d −1 ) to the near-surface concentrations of DMS suggest that bacteria alone could not have sustained DMS pools at most stations, indicating an important role for phytoplankton-mediated DMS production. The findings from this study provide crucial information on the distribution and cycling of DMS and DMSP in a critically under-sampled area of the global ocean, and they highlight the importance of oceanic fronts as hotspots of the production of marine biogenic S compounds and as potential sources of aerosols particularly in regions of low anthropogenic perturbations such as the frontal waters of the Southern Hemisphere.

Beta version