Published in

Astronomy & Astrophysics

DOI: 10.1051/0004-6361/201833390

Links

Tools

Export citation

Search in Google Scholar

A new method for unveiling open clusters in Gaia

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Context. The publication of the Gaia Data Release 2 (Gaia DR2) opens a new era in astronomy. It includes precise astrometric data (positions, proper motions, and parallaxes) for more than 1.3 billion sources, mostly stars. To analyse such a vast amount of new data, the use of data-mining techniques and machine-learning algorithms is mandatory. Aims. A great example of the application of such techniques and algorithms is the search for open clusters (OCs), groups of stars that were born and move together, located in the disc. Our aim is to develop a method to automatically explore the data space, requiring minimal manual intervention. Methods. We explore the performance of a density-based clustering algorithm, DBSCAN, to find clusters in the data together with a supervised learning method such as an artificial neural network (ANN) to automatically distinguish between real OCs and statistical clusters. Results. The development and implementation of this method in a five-dimensional space (l, b, ϖ, μα*, μδ) with the Tycho-Gaia Astrometric Solution (TGAS) data, and a posterior validation using Gaia DR2 data, lead to the proposal of a set of new nearby OCs. Conclusions. We have developed a method to find OCs in astrometric data, designed to be applied to the full Gaia DR2 archive.

Beta version